Respuesta :

Consider, pls, this solution.
Note, basic steps are maked by →
Ver imagen evgeniylevi

The solution to the given initial value problem [tex]\frac{d^2y}{dt^2}-10\frac{dy}{dt} +25y=0[/tex] is [tex]y=-15xe^{5x}+4e^{5x}[/tex]

What is differential equation?

"Any equation which contains derivatives is a differential equation."

What is initial value problem?

"It is a differential equation along with an appropriate number of initial conditions."

What is an auxiliary equation?

"An equation obtained from the standard form of a linear differential equation by replacing the right member by zero."

For given question,

We have been given a differential equation [tex]\frac{d^2y}{dt^2}-10\frac{dy}{dt} +25y=0[/tex]

And initial conditions [tex]y(0)=4,y'(0)=5[/tex]

An auxiliary equation of given differential equation is,

[tex]m^{2} -10m+25=0[/tex]

We solve above auxiliary equation.

[tex]\Rightarrow m^{2} -10m+25=0\\\Rightarrow m^{2} -5m-5m+25=0\\\Rightarrow m(m-5)-5(m-5)=0\\\Rightarrow (m-5)(m-5)=0\\\Rightarrow (m-5)^2=0\\\Rightarrow m-5=0\\\Rightarrow m=5[/tex]

So, the solution of the given differential equation would be,

[tex]y=C_1xe^{5x}+C_2e^{5x}[/tex]

Now we find the value of constants [tex]C_1,C_2[/tex] using the initial values.

Here, y(0) = 4,

[tex]\Rightarrow 4=C_1(0)e^{5\times 0}+C_2e^{5\times 0}\\\Rightarrow 4=0+C_2\times e^0\\\Rightarrow 4=C_2\times 1\\\Rightarrow C_2=4[/tex]

For [tex]y=C_1xe^{5x}+C_2e^{5x}[/tex]

[tex]y'=C_1e^{5x}+5xC_1e^{5x}+5C_2e^{5x}[/tex]

Also, y′(0) = 5

[tex]\Rightarrow 5=C_1e^{5\times 0}+5(0)C_1e^{5\times 0}+5C_2e^{5\times 0}\\\Rightarrow 5=C_1e^0+0+5(4)e^0\\\Rightarrow 5=C_1(1)+20(1)\\\Rightarrow 5=C_1+20\\\Rightarrow C_1=-15[/tex]

So, the solution would be [tex]y=-15xe^{5x}+4e^{5x}[/tex]

Therefore, the solution to the given initial value problem [tex]\frac{d^2y}{dt^2}-10\frac{dy}{dt} +25y=0[/tex] is [tex]y=-15xe^{5x}+4e^{5x}[/tex]

Learn more about the initial value problem here:

https://brainly.com/question/8736446

#SPJ2