Respuesta :
The solution to the given initial value problem [tex]\frac{d^2y}{dt^2}-10\frac{dy}{dt} +25y=0[/tex] is [tex]y=-15xe^{5x}+4e^{5x}[/tex]
What is differential equation?
"Any equation which contains derivatives is a differential equation."
What is initial value problem?
"It is a differential equation along with an appropriate number of initial conditions."
What is an auxiliary equation?
"An equation obtained from the standard form of a linear differential equation by replacing the right member by zero."
For given question,
We have been given a differential equation [tex]\frac{d^2y}{dt^2}-10\frac{dy}{dt} +25y=0[/tex]
And initial conditions [tex]y(0)=4,y'(0)=5[/tex]
An auxiliary equation of given differential equation is,
[tex]m^{2} -10m+25=0[/tex]
We solve above auxiliary equation.
[tex]\Rightarrow m^{2} -10m+25=0\\\Rightarrow m^{2} -5m-5m+25=0\\\Rightarrow m(m-5)-5(m-5)=0\\\Rightarrow (m-5)(m-5)=0\\\Rightarrow (m-5)^2=0\\\Rightarrow m-5=0\\\Rightarrow m=5[/tex]
So, the solution of the given differential equation would be,
[tex]y=C_1xe^{5x}+C_2e^{5x}[/tex]
Now we find the value of constants [tex]C_1,C_2[/tex] using the initial values.
Here, y(0) = 4,
[tex]\Rightarrow 4=C_1(0)e^{5\times 0}+C_2e^{5\times 0}\\\Rightarrow 4=0+C_2\times e^0\\\Rightarrow 4=C_2\times 1\\\Rightarrow C_2=4[/tex]
For [tex]y=C_1xe^{5x}+C_2e^{5x}[/tex]
[tex]y'=C_1e^{5x}+5xC_1e^{5x}+5C_2e^{5x}[/tex]
Also, y′(0) = 5
[tex]\Rightarrow 5=C_1e^{5\times 0}+5(0)C_1e^{5\times 0}+5C_2e^{5\times 0}\\\Rightarrow 5=C_1e^0+0+5(4)e^0\\\Rightarrow 5=C_1(1)+20(1)\\\Rightarrow 5=C_1+20\\\Rightarrow C_1=-15[/tex]
So, the solution would be [tex]y=-15xe^{5x}+4e^{5x}[/tex]
Therefore, the solution to the given initial value problem [tex]\frac{d^2y}{dt^2}-10\frac{dy}{dt} +25y=0[/tex] is [tex]y=-15xe^{5x}+4e^{5x}[/tex]
Learn more about the initial value problem here:
https://brainly.com/question/8736446
#SPJ2