Respuesta :
Try this solution:
1. according to the definition of logarithm
[tex]log_ab=c \ =\ \textgreater \ \ a^c=b,[/tex] where a∈(0;1)∪(1;+oo) and b>0.
2. The variable is only in b, using item 1. it is possible to write: x+3>0.
⇒ x>-3.
Answer: D(f)=(-3;+oo).
1. according to the definition of logarithm
[tex]log_ab=c \ =\ \textgreater \ \ a^c=b,[/tex] where a∈(0;1)∪(1;+oo) and b>0.
2. The variable is only in b, using item 1. it is possible to write: x+3>0.
⇒ x>-3.
Answer: D(f)=(-3;+oo).
To find the domain for [tex]f(x)[/tex], we first must find that domain of [tex]\log2(x+3),[/tex] as other integers do not influence the domain.
- For the domain [tex]\to f(x), \ \ \ 2(x+3) > 0[/tex] As a result,
[tex]\to x + 3 > 0\\\\\to x>-3[/tex]
- As a result, any real numbers higher than -3 are in the domain of [tex]f(x)[/tex].
- According to the definition of logarithm
[tex]\to \log_{a} b = c \geq a^c = b[/tex], where [tex]a \epsilon (0;1) U(1;+00)[/tex] and[tex]b>0[/tex].
- Using item 1, the variable is only in b.
- It's feasible to write: [tex]x+3>0, X-3.[/tex]
Therefore, the answer is "All real numbers < -3"
Learn more:
brainly.com/question/14032449