I need help solving this problem. [tex]4x cos ^{-1} (2x+4)- \sqrt{3-3 x^{2} }, [/tex] find f'(x). My original which is wrong, is included.

I need help solving this problem tex4x cos 1 2x4 sqrt33 x2 tex find fx My original which is wrong is included class=

Respuesta :

Given:
[tex]f(x)=4xcos^{-1}(2x+4)-\sqrt{3-3x^2}[/tex]

Using
[tex]\frac{d}{dx}cos^{-1}(x)=-\frac{1}{\sqrt{1-x^2}}[/tex]
we derive
[tex]\frac{d}{dx}4xcos^{-1}(2x+4)[/tex]
[tex]=4cos^{-1}(2x+4)-\frac{8x}{\sqrt{1-(2x+4)^2}}[/tex]

Similarly, using
[tex]\frac{d}{dx}\sqrt{x}=\frac{1}{2\sqrt{x}}[/tex]
we derive
[tex]\frac{d}{dx}(-\sqrt{3-3x^2})[/tex]
[tex]=\frac{3x}{\sqrt{3-3x^2}}[/tex]

Therefore, the derivative is
[tex]f'(x)=\frac{d}{dx}(4xcos^{-1}(2x+4)-\sqrt{3-3x^2})[/tex]
[tex]=4cos^{-1}(2x+4)-\frac{8x}{\sqrt{1-(2x+4)^2}}+\frac{3x}{\sqrt{3-3x^2}}[/tex]
I believe it's as follows:

[tex]f'(x) = 4(acos(2x+4)- \frac{2x}{ \sqrt{-4x^2-16x-15}})+ \frac{3x}{ \sqrt{3-3x^2}}[/tex]