Respuesta :

[tex]\bf cos(2x)=-\cfrac{\sqrt{2}}{2}\implies cos^{-1}[cos(2x)]=cos^{-1}\left( -\cfrac{\sqrt{2}}{2} \right) \\\\\\ \measuredangle 2x=cos^{-1}\left( -\cfrac{\sqrt{2}}{2} \right)\implies \measuredangle 2x= \begin{cases} \frac{3\pi }{4}\\\\ \frac{5\pi }{4} \end{cases}\\\\ -------------------------------\\\\ x=\cfrac{3\pi }{2\cdot 4}\implies \measuredangle x=\cfrac{3\pi }{8}\\\\ -------------------------------\\\\ x=\cfrac{5\pi }{2\cdot 4}\implies \measuredangle x=\cfrac{5\pi }{8}[/tex]
ACCESS MORE