Respuesta :
Answer:
Hence, the x-value of point C is -0.6
Step-by-step explanation:
The coordinates of A are (-3,5)
and the coordinates of B are (3,0).
Point C cuts the line segment AB in the ratio 2:3.
If any point C cut the line segment AB with vertices A(a,b) and B(c,d) in the ratio m:n, then the coordinates of point C(e,f) is given by:
[tex]e=\dfrac{mc+na}{m+n}[/tex] and [tex]f=\dfrac{md+nb}{m+n}[/tex]
Here we have m=2 and n=3
a=-3,b=5 and c=3 and d=0.
Hence, [tex]e=\dfrac{2\times3+3\times(-3)}{2+3}=\dfrac{-3}{5}=-0.6[/tex]
and [tex]f=\dfrac{2\times0+3\times5}{2+3}=\dfrac{15}{5}=3[/tex]
Hence the coordinates of point C is (-0.6,3).
Hence, the x-value of point C is -0.6.