The water in a tank is pressurized by air, and the pressure is measured by a multi-fluid manometer as shown. determine the gage pressure of air in the tank if h1 = 0.2 m, h2 = 0.3 m, and h3 = 0.46 m. take the densities of water, oil, and mercury to be 1000 kg/m3 , 850 kg/m3 , and 13,600 kg/m3 , respectively

Respuesta :

There is something wrong with the given, the second should be 3, 850 kg/m3. So here is the answer for this question:
The formula is P1 + Pwatergh1 + Poilgh2 - Pmercurygh3 = Patm
In order to solve for P1 we need to rearrange the formula, so it will look like:P1 = P atm - Pwatergh1 - Poilgh2 + Pmercurygh3
Noting that P1gage would be equal to P1 - Patm and we can substitute the given above:P1,gage = (9.81 m/s^2)[13,600 kg/m^3)(0.46m) - (1000kg/m^3)(0.2 m)
= (850kg/m^3)(0.3m) (1N / 1kg * m/s^2) (1kPa/ 1000 N/m^2)
= 56.9 kPa
PBCHEM

Answer : 56.9 kPa

Solution : Given :-

ρ ([tex] H_{2} O[/tex]) = 1000 [tex] kg/m^{3} [/tex] ; ρ (oil) = 850 [tex] kg/m^{3} [/tex]; ρ (Hg) = 13,600 [tex] kg/m^{3} [/tex]

[tex] h_{1} [/tex] = 0.2 m; [tex] h_{2} [/tex] = 0.3 m; [tex] h_{3} [/tex] = 0.46 m

Formula : [tex] P_{1} [/tex] + ρ ([tex] H_{2} O[/tex]) [tex]g h_{1} [/tex] + ρ (oil)[tex]g h_{2} [/tex] - ρ (Hg) [tex]g h_{3} [/tex] = [tex] P_{atm} [/tex]

On rearranging we get,

[tex] P_{1} [/tex] = [tex] P_{atm} [/tex] - ρ ([tex] H_{2} O[/tex]) [tex]g h_{1} [/tex] - ρ (oil)[tex]g h_{2} [/tex] + ρ (Hg) [tex]g h_{3} [/tex]

Now,

[tex] P_{1} [/tex] - [tex] P_{atm} [/tex] = g (ρ (Hg) [tex]h_{3} [/tex] - ρ ([tex] H_{2} O[/tex]) [tex] h_{1} [/tex] - ρ (oil)[tex] h_{2} [/tex])

We know that, [tex] P_{1} [/tex] - [tex] P_{atm} [/tex] = [tex] P_{1}_gage [/tex]

On substitution we get,

= [tex] (9.81 m/s^2) X [13,600 kg/m^3) X (0.46m) - (1000kg/m^3) X (0.2 m)- (850kg/m^3) X (0.3m) X [/tex] X[tex] \frac{1N} {1kg . m/s^{2}} X \frac {1kPa} {1000. N/m^{2}} [/tex]

= 56.9 kPa.

Therefore, [tex] P_{1}_gage [/tex] = 56.9 kPa.

Ver imagen PBCHEM
ACCESS MORE