The path of motion of a 8-lb particle in the horizontal plane is described in terms of polar coordinates as r = (2 t + 1)ft and θ = (0.2 t2 − t) rad, where t is in seconds.

Respuesta :

Missing question in the text:
"Determine the magnitude of the resultant force acting on the particle when t=2s."

For Newton's second law, the force is given by
[tex]F=ma[/tex]
where m is the mass of the particle and a its acceleration.

The acceleration in polar coordinates is given by:
[tex]a= \sqrt{a_r^2+a_{\theta}^2} [/tex]
where
[tex]a_r = r''-r \theta'^2[/tex]
[tex]a_{\theta} = r \theta'' +2r'\theta '[/tex]
are the radial and tangential accelerations.

Therefore, to find the acceleration starting from the polar coordinates, we need to find the derivatives of r and [tex]\theta[/tex]. Let's compute them:
[tex]r=2t+1[/tex]
[tex]r'=2[/tex]
[tex]r''=0[/tex]
We need the values at t=2s, therefore we have
[tex]r=5 ft=1.52 m[/tex]
[tex]r'=2 ft=0.61 m[/tex]
[tex]r''=0 ft = 0 m[/tex]

and 
[tex]\theta = 0.2 t^2-t[/tex]
[tex]\theta' = 0.4t-1[/tex]
[tex]\theta''=0.4[/tex]
And using t=2s,
[tex]\theta = -1.2 rad[/tex]
[tex]\theta' = -0.2 rad[/tex]
[tex]\theta''=0.4 rad[/tex]

And now we can calculate the acceleration:
[tex]a_r=r''-r\theta '^2 =-0.06 [/tex]
[tex]a_{\theta}=r\theta ''+2r' \theta ' = 0.36[/tex]
and
[tex]a= \sqrt{a_r^2+a_{\theta}^2}= \sqrt{(-0.06)^2+(0.36)^2}=0.35 m/s^2 [/tex]
And using the mass: 
[tex]m=8 lb=3.63 kg[/tex]
we find the force:
[tex]F=ma=3.63 kg\cdot 0.35 m/s^2=1.29 N[/tex]

ACCESS MORE