Respuesta :
Step-by-step explanation:
Look at the picture.
Any pair of choice can be the coordinates of the rotation of the point
W (-3, 4) clockwise.
All points have the same distance from the beginning.
The formula of a distance between the origin and a point (x, y):
[tex]d=\sqrt{x^2+y^2}[/tex]
W(-3, 4)
[tex]d=\sqrt{(-3)^2+4^2}=\sqrt{9+16}=\sqrt{25}=5[/tex]
(3, -4)
[tex]d=\sqrt{3^2+(-4)^2}=\sqrt{9+16}=\sqrt{25}=5[/tex]
(4, 3)
[tex]d=\sqrt{4^2+3^2}=\sqrt{9+16}=\sqrt{25}=5[/tex]
(-4, -3)
[tex]d=\sqrt{(-4)^2+(-3)^2}=\sqrt{9+16}=\sqrt{25}=5[/tex]
(-4, 3)
[tex]d=\sqrt{(-4)^2+3^2}=\sqrt{9+16}=\sqrt{25}=5[/tex]
![Ver imagen gmany](https://us-static.z-dn.net/files/d03/f4604aff3e15032011de4a16f88c216d.png)
Answer:
The answer is (-4, 3).
Step-by-step explanation:
Hope this helps =)