it fals under algebra: solving for the unknown so
[tex] \frac{1}{x}-c= \frac{1}{k} [/tex]
basically, we should try to isolate 1x on one side so something like
x=something so
[tex] \frac{1}{k} [/tex]-c=[tex] \frac{1}{k} [/tex]
try to isolate x so
add c to both sides
[tex] \frac{1}{x} [/tex]-c+c=[tex] \frac{1}{k} [/tex]+c
1/x=[tex] \frac{1}{k} [/tex]+c
multiply both sides by x
x/x=([tex] \frac{1}{k} [/tex]+c)x
1=([tex] \frac{1}{k} [/tex]+c)x
divide both sides by (1/k+c)
[tex] \frac{1}{ \frac{1}{k}+c } [/tex]=x
simplify
combine denoenator
[tex] c= \frac{ck}{k} , \frac{1}{k}+c= \frac{1}{k}+ \frac{ck}{k} [/tex]
now invert and multiply
[tex] \frac{1}{ \frac{1+ck}{k} }=1 \times \frac{k}{1+ck}= \frac{k}{1+ck} [/tex]
x=[tex] \frac{k}{1+ck} [/tex]