Answer:
[tex]\frac{4v_1v_2v_3}{2v_2v_3+v_1v_2+v_1v_2}[/tex]
Explanation:
The average speed is given by:
[tex]v_{avg}= \frac{\text{total distance}}{\text{total time taken}}[/tex]
let the total distance be d
time taken in first part of the journey= t₁
[tex]t_1 = \frac{d/2}{v_1}[/tex]
time taken in second part of the journey= t₂
[tex]t_2 = \frac{d/4}{v_2}[/tex]
time taken in third part of the journey= t₃
[tex]t_3 = \frac{d/4}{v_3}[/tex]
[tex]v_{avg}= \frac{d}{t_1+t_2+t_3}=\frac{d}{\frac{d/2}{v_1}+\frac{d/4}{v_2}+\frac{d/4}{v_3}} [/tex]
[tex]v_{avg}=\frac{4v_1v_2v_3}{2v_2v_3+v_1v_2+v_1v_2}[/tex]