[tex]\bf -3i\implies 0-3i\implies \stackrel{a}{0}~~~~\stackrel{b}{-3}~i\quad
\begin{cases}
r=\sqrt{a^2+b^2}\\\\
\theta =tan^{-1}\left( \frac{b}{a} \right)
\end{cases}
\\\\\\
r=\sqrt{0^2+(-3)^2}\implies r=\sqrt{9}\implies r=3[/tex]
now, as far as the angle θ, if we plug those values, we'd get an undefined, it just so happen that tan⁻¹ is not defined on that range, however, let's just use the provided coordinates, check the picture below.
therefore [tex]\bf z=r[cos(\theta )+i~sin(\theta )]\implies z=3[cos(270^o)+i~sin(270^o)][/tex]