Respuesta :
we are given
[tex] 5x=\sqrt{10+15x} [/tex]
Since, we have to solve for x
To solve for x , we will isolate x on anyone side
step-1: Take square both sides
[tex] (5x)^2=(\sqrt{10+15x})^2 [/tex]
[tex] 25x^2=10+15x [/tex]
step-2: Move all terms on left side
[tex] 25x^2-15x-10=0 [/tex]
step-3: Factoring
[tex] 5(5x^2-3x-2)=0 [/tex]
[tex] 5x^2-3x-2=0 [/tex]
now, we can factor it
and we get
[tex] (x-1)(5x+2)=0 [/tex]
step-4: Solve for x
we can set each terms =0
and then we can solve for x
[tex] x-1=0 [/tex]
[tex] x=1 [/tex]
[tex] 5x+2=0 [/tex]
[tex] x=-\frac{2}{5} [/tex]
we know that
[tex] x=-\frac{2}{5} [/tex] will make negative value inside sqrt
and we know that negative value inside sqrt is not possible
so,
[tex] x=-\frac{2}{5} [/tex] can not be solution
Hence,
[tex] x=1 [/tex]................Answer