Respuesta :

5x=100+15x  
15x-5x= - 100
10x = - 100
x= -100 :10
x= - 10

we are given

[tex] 5x=\sqrt{10+15x} [/tex]

Since, we have to solve for x

To solve for x , we will isolate x on anyone side

step-1: Take square both sides

[tex] (5x)^2=(\sqrt{10+15x})^2 [/tex]

[tex] 25x^2=10+15x [/tex]


step-2: Move all terms on left side

[tex] 25x^2-15x-10=0 [/tex]

step-3: Factoring

[tex] 5(5x^2-3x-2)=0 [/tex]

[tex] 5x^2-3x-2=0 [/tex]

now, we can factor it

and we get

[tex] (x-1)(5x+2)=0 [/tex]

step-4: Solve for x

we can set each terms =0

and then we can solve for x

[tex] x-1=0 [/tex]

[tex] x=1 [/tex]

[tex] 5x+2=0 [/tex]

[tex] x=-\frac{2}{5} [/tex]

we know that

[tex] x=-\frac{2}{5} [/tex] will make negative value inside sqrt

and we know that negative value inside sqrt is not possible

so,

[tex] x=-\frac{2}{5} [/tex] can not be solution

Hence,

[tex] x=1 [/tex]................Answer