Respuesta :

Answer with Step-by-step explanation:

We are given that

Angle ABC is  a right angle .

[tex]\angle ABC=90^{\circ}[/tex]

DB bisects the angle ABC.

We have to prove that [tex]m\angle CBD=45^{\circ}[/tex]

When DB bisects the angle ABC

[tex]m\angle ABD=m\angle CBD[/tex]

[tex]m\angle CBD+m\angle ABD=\angle ABC[/tex]

Substitute the value

[tex]m\angle CBD+m\angle CBD=90[/tex]

[tex]2m\angle CBD=90[/tex]

[tex]m\angle CBD=\frac{1}{2}\times 90=45^{\circ}[/tex]

Hence, proved.

When an angle is bisected, then it would be divided into two equal parts. Thus, bisection of <B implies m∠CBD = 45°.

Bisection of angle implies that the angle would be divided into two equal parts.

Given that ΔABC is a right angled triangle.  Thus since <ABC is right angle, it implies that the measure of the angle is [tex]90^{o}[/tex].

Then;

DB is not perpendicular to AC

m<A + m<ABD + m<ADB = [tex]180^{o}[/tex] (sum of angles in a triangle)

Also,

m<C + m<CBD + m<CDB = [tex]180^{o}[/tex] (sum of angles in a triangle)

Since DB is a bisector of right angle B, then;

m<B = m<ABD + m<CBD (bisection property of an angle)

[tex]90^{o}[/tex] = m<ABD + m<CBD

But,

m<ABD ≅ m<CBD (similarity property)

So that:

[tex]90^{o}[/tex] = 2<CBD

m<CBD = [tex]\frac{90^{o} }{2}[/tex]

          = [tex]45^{o}[/tex]

m<CBD = [tex]45^{o}[/tex]

Thus, the measure of angle CBD = ABD = [tex]45^{o}[/tex]

Visit: https://brainly.com/question/11813708

ACCESS MORE