Respuesta :
Answer with Step-by-step explanation:
We are given that
Angle ABC is a right angle .
[tex]\angle ABC=90^{\circ}[/tex]
DB bisects the angle ABC.
We have to prove that [tex]m\angle CBD=45^{\circ}[/tex]
When DB bisects the angle ABC
[tex]m\angle ABD=m\angle CBD[/tex]
[tex]m\angle CBD+m\angle ABD=\angle ABC[/tex]
Substitute the value
[tex]m\angle CBD+m\angle CBD=90[/tex]
[tex]2m\angle CBD=90[/tex]
[tex]m\angle CBD=\frac{1}{2}\times 90=45^{\circ}[/tex]
Hence, proved.
When an angle is bisected, then it would be divided into two equal parts. Thus, bisection of <B implies m∠CBD = 45°.
Bisection of angle implies that the angle would be divided into two equal parts.
Given that ΔABC is a right angled triangle. Thus since <ABC is right angle, it implies that the measure of the angle is [tex]90^{o}[/tex].
Then;
DB is not perpendicular to AC
m<A + m<ABD + m<ADB = [tex]180^{o}[/tex] (sum of angles in a triangle)
Also,
m<C + m<CBD + m<CDB = [tex]180^{o}[/tex] (sum of angles in a triangle)
Since DB is a bisector of right angle B, then;
m<B = m<ABD + m<CBD (bisection property of an angle)
[tex]90^{o}[/tex] = m<ABD + m<CBD
But,
m<ABD ≅ m<CBD (similarity property)
So that:
[tex]90^{o}[/tex] = 2<CBD
m<CBD = [tex]\frac{90^{o} }{2}[/tex]
= [tex]45^{o}[/tex]
m<CBD = [tex]45^{o}[/tex]
Thus, the measure of angle CBD = ABD = [tex]45^{o}[/tex]
Visit: https://brainly.com/question/11813708