Respuesta :

Answer:

c=5/(sin)35...................

Step-by-step explanation:


Answer:

[tex]c=\frac{5}{cos(35^{\circ})}[/tex]

Step-by-step explanation:

Take a look to the picture I attached you. Now the functions on a right triangle are defined as:

[tex]sin(\theta)=\frac{opposite}{hypotenuse}\hspace{10}csc(\theta)=\frac{hypotenuse}{opposite} \\\\cos(\theta)=\frac{adjacent}{hypotenuse}\hspace{10}sec(\theta)=\frac{hypotenuse}{adjacent} \\\\tan(\theta)=\frac{opposite}{adjacent}\hspace{17}cot(\theta)=\frac{adjacent}{opposite}[/tex]

Using the picture and the previous equations, it's easier to conclude that the best trigonometry function to use in this case is the cosine function, therefore:

[tex]cos(35^{\circ})=\frac{5}{c}[/tex]

Finally, solving for c:

[tex]c=\frac{5}{cos(35^{\circ})}[/tex]

Ver imagen carlos2112