Which of the following statements have the same result? Explain each step in solving each one.

I. f(2) when f(x) = 3x + 2
II. f−1(3) when f(x) = 2 x minus 7, all over 3
III. 2y + 14 = 4y − 2

Respuesta :

I. f(2) when f(x) = 3x + 2
 f(2) = 3(2) + 2=8
 III. 2y + 14 = 4y − 2
 4y- 2y = 14+2
 2y = 16 
 y=16/2=8
 statements have the same result

Answer:

All three statements have same results.

Step-by-step explanation:

Statement I: f(2) when f(x) = 3x + 2.

[tex]f(x)=3x+2[/tex]

Put x=2.

[tex]f(x)=3(2)+2=8[/tex]

The value of the function is 8. It means y=8 at x=2.

Statement II:f⁻¹(3). when f(x) = 2 x minus 7, all over 3.

[tex]f(x)=\frac{2x-7}{3}[/tex]

Find the inverse of the function.

Step 1: Substitute f(x)=y

[tex]y=\frac{2x-7}{3}[/tex]

Step 2: Interchange x and y.

[tex]x=\frac{2y-7}{3}[/tex]

Step 3: Isolate y.

[tex]y=\frac{3x+7}{2}[/tex]

Step 4: Substitute y=f⁻¹(x).

[tex]f^{-1}(x)=\frac{3x+7}{2}[/tex]

Now, substitute x=3, to find f⁻¹(3).

[tex]f^{-1}(3)=\frac{3(3)+7}{2}=8[/tex]

The result of statement II is 8.

Statement III: 2y + 14 = 4y − 2

[tex]2y+14=4y-2[/tex]

[tex]14+2=4y-2y[/tex]

[tex]16=2y[/tex]

[tex]y=8[/tex]

The result of statement III is 8.

Therefore all three statements have same results.