<< Add [tex] .\frac{-4}{5} [/tex] to the left and right of the equation, multiple and make ''opposite multiplation'' to find x.
A) [tex] \frac{4}{5x}. \frac{-4}{5} = 8. \frac{-4}{5}
[/tex]
[tex] \frac{16}{25x} = \frac{-32}{5} [/tex]
25x.(-32)= (-16).5
-800x= -80
**to leave x alone and positive, you must divide to -800.
[tex]x= \frac{-80}{-800} [/tex]
[tex]x= \frac{1}{10} [/tex]
= INCORRECT
B) [tex] \frac{4}{5x} . \frac{1}{5} = 8. \frac{1}{5}
[/tex]
[tex] \frac{4}{25x} = \frac{8}{5} [/tex]
[tex]25x.8= 4.5[/tex]
[tex]200x=20
[/tex]
[tex]x= \frac{20}{200} = \frac{1}{10} [/tex]
C)[tex] \frac{4}{5x} . \frac{5}{4}= \frac{8.5}{4} [/tex]
[tex] \frac{1}{x} = \frac{40}{4} [/tex]
[tex] \frac{1}{x} =10[/tex]
10x=1
[tex]x= \frac{1}{10} [/tex]
D) [tex] \frac{4.5}{5x} = 8.5[/tex]
[tex] \frac{4}{x} = 40[/tex]
40x= 4
x= [tex] \frac{4}{40} [/tex] = 1/10
I think there is a problem with the options :D