Respuesta :
Solution:
we are given that
[tex] sin \theta=-5/7 [/tex]
As we know that
[tex] cos \theta =\sqrt{1-sin^2 \theta} \\ [/tex]
Substitute the value we get
[tex] cos \theta=\sqrt{1-(\frac{-5}{7})^2} \\ \\ cos \theta=\sqrt{1-(\frac{25}{49})} \\ \\ cos \theta=\sqrt{(\frac{24}{49})} =\frac{\sqrt{24}}{7}\\ [/tex]
Since [tex] sec \theta=\frac{1}{cos \theta}\\ [/tex]
So here [tex] sec \theta=\frac{7}{\sqrt{24}}\\ [/tex]
As we know that
[tex] tan \theta=\frac{sin \theta}{cos \theta}\\ \\ \text{Substitute the values we get}\\ \\ tan \theta=\frac{-5/7}{\frac{\sqrt{24}}{7}}\\ \\ tan \theta=\frac{-5}{\sqrt{24}}\\ [/tex]
Hence the correct option is C.
It is given that
[tex]sin \theta = \frac{-5}{7}[/tex]
And according to pythagorean identity, we will get
[tex]cos \theta = \pm \sqrt{1-sin^2 \theta}[/tex]
Substituting the value of sin theta, we will get
[tex]cos \theta = \pm \sqrt{1- \frac{25}{49}} \\ cos \theta = \pm \frac{\sqrt{24}}{7}[/tex]
and sec theta is the reciprocal of cos theta.
SO possible values of sec theta are
[tex]sec \theta = \pm \frac{7}{ \sqrt{24}}[/tex]
And tan theta is the ratio of sin theta and cos theta
So possible values of tan theta are
[tex]tan \theta = \pm \frac{5}{ \sqrt{24}}[/tex]
So the correct options are B and C .