If sin theta = -5/7 , which of the following are possible?

A) cos theta = √24/7 , and tan theta = 5/√24
B) cos theta = -√24/7, and tan theta = 5/√24
C) sec theta = 7/√24 , and tan theta = -5/√24
D)sec theta = -7/5, and tan theta = 5/√24

Respuesta :

Solution:

we are given that

[tex] sin \theta=-5/7  [/tex]

As we know that

[tex] cos \theta =\sqrt{1-sin^2 \theta}  \\ [/tex]

Substitute the value we get

[tex] cos \theta=\sqrt{1-(\frac{-5}{7})^2}  \\ \\ cos \theta=\sqrt{1-(\frac{25}{49})}  \\ \\ cos \theta=\sqrt{(\frac{24}{49})} =\frac{\sqrt{24}}{7}\\   [/tex]

Since [tex] sec \theta=\frac{1}{cos \theta}\\  [/tex]

So here [tex] sec \theta=\frac{7}{\sqrt{24}}\\  [/tex]

As we know that

[tex] tan \theta=\frac{sin \theta}{cos \theta}\\ \\  \text{Substitute the values we get}\\ \\ tan \theta=\frac{-5/7}{\frac{\sqrt{24}}{7}}\\ \\ tan \theta=\frac{-5}{\sqrt{24}}\\  [/tex]

Hence the correct option is C.

Riia

It is given that

[tex]sin \theta = \frac{-5}{7}[/tex]

And according to pythagorean identity, we will get

[tex]cos \theta = \pm \sqrt{1-sin^2 \theta}[/tex]

Substituting the value of sin theta, we will get

[tex]cos \theta = \pm \sqrt{1- \frac{25}{49}} \\ cos \theta = \pm \frac{\sqrt{24}}{7}[/tex]

and sec theta is the reciprocal of cos theta.

SO possible values of sec theta are

[tex]sec \theta = \pm \frac{7}{ \sqrt{24}}[/tex]

And tan theta is the ratio of sin theta and cos theta

So possible values of tan theta are

[tex]tan  \theta = \pm \frac{5}{ \sqrt{24}}[/tex]

So the correct options are B and C .