Respuesta :
Answer is: temperature is 81,39°C.
m(I₂) = 9,04 g.
m(C₆H₆) = 75,5 g = 0,0755 kg.
Tb(C₆H₆) = 80,2°C.
n(I₂) = m(I₂) ÷ M(I₂).
n(I₂) = 9,04 g ÷ 253,9 g/mol.
n(I₂) = 0,035 mol.
b = 0,035 mol ÷ 0,0755 kg.
b = 0,47 mol/kg.
ΔT = 0,47 mol/kg ·2,53 kg·°C/mol.
ΔT = 1,19°C.
T(solution) = 1,19°C + 80,2°C = 81,39°C.
b - molality.
m(I₂) = 9,04 g.
m(C₆H₆) = 75,5 g = 0,0755 kg.
Tb(C₆H₆) = 80,2°C.
n(I₂) = m(I₂) ÷ M(I₂).
n(I₂) = 9,04 g ÷ 253,9 g/mol.
n(I₂) = 0,035 mol.
b = 0,035 mol ÷ 0,0755 kg.
b = 0,47 mol/kg.
ΔT = 0,47 mol/kg ·2,53 kg·°C/mol.
ΔT = 1,19°C.
T(solution) = 1,19°C + 80,2°C = 81,39°C.
b - molality.
Answer: 374.2 K
Explanation:- Elevation in boiling point is:
[tex]\Delta T_b=k_b\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]
[tex]T_f[/tex] = change in boiling point
[tex]k_b[/tex] = boiling point constant=[tex]2.53Kkg/mol[/tex]
m = molality
Given: mass of solute [tex](I_2)[/tex]= 9.04 g
Molar mass of solute [tex](I_2)[/tex]= 254 g/mol
Weight of solvent (benzene)= 75.5 g= 0.0755 kg
[tex]\Delta T_b=2.53 Kkg/mol\times \frac{9.04g}{254g/mol\times 0.0755kg}=1.2K[/tex]
[tex]\Delta T_b=1.2 K=T_b-T^0_b=T_b-373K[/tex]
[tex]T_b=374.2K[/tex]
The boiling point of the solution is [tex]374.2K[/tex].