Law of sines: In △BCD, d = 3, b = 5, and m∠D = 25°. What are the possible approximate measures of angle B?

only 90°

only 155°

20° and 110°

45° and 135°

Respuesta :

≈Law of sines:

   b              d
------- =   ----------
sin(B)       sin(D)

=> sin(B) = sin(D) * b / d

sin(B) = sin(25°) * 5 / 3 ≈ 0.4226 * 5/3 = 0.7043

=> B = arcsine(0.7043) ≈ 45° or 135°

Answer: 45° and 135°

Answer:

45° and 135°

Step-by-step explanation:

The law of sines states

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Using the information we have,

[tex]\frac{\sin 25}{3}=\frac{\sin B}{5}[/tex]

Cross multiplying, we have

[tex]5\sin 25=3\sin B[/tex]

Divide both sides by 3:

[tex]\frac{5\sin 25}{3}=\sin B[/tex]

To cancel the sine function, apply the inverse sine:

[tex]\sin^{-1}(\frac{5\sin 25}{3})=B\\\\44.78 \approx B[/tex]

This means B can be either 45° or 135°.

ACCESS MORE