Respuesta :
≈Law of sines:
b d
------- = ----------
sin(B) sin(D)
=> sin(B) = sin(D) * b / d
sin(B) = sin(25°) * 5 / 3 ≈ 0.4226 * 5/3 = 0.7043
=> B = arcsine(0.7043) ≈ 45° or 135°
Answer: 45° and 135°
b d
------- = ----------
sin(B) sin(D)
=> sin(B) = sin(D) * b / d
sin(B) = sin(25°) * 5 / 3 ≈ 0.4226 * 5/3 = 0.7043
=> B = arcsine(0.7043) ≈ 45° or 135°
Answer: 45° and 135°
Answer:
45° and 135°
Step-by-step explanation:
The law of sines states
[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]
Using the information we have,
[tex]\frac{\sin 25}{3}=\frac{\sin B}{5}[/tex]
Cross multiplying, we have
[tex]5\sin 25=3\sin B[/tex]
Divide both sides by 3:
[tex]\frac{5\sin 25}{3}=\sin B[/tex]
To cancel the sine function, apply the inverse sine:
[tex]\sin^{-1}(\frac{5\sin 25}{3})=B\\\\44.78 \approx B[/tex]
This means B can be either 45° or 135°.