Answer:
Option A - [tex]x^2-14x+170=0[/tex]
Step-by-step explanation:
Given : The factor [tex](x-7+11i)[/tex]
To find : Determine which polynomial can be rewritten to include the factor below?
Solution :
A quadratic equation [tex]ax^2+bx-c=0[/tex] in which [tex]b^2-4ac<0[/tex] has two complex roots [tex]x=\frac{-b+i\sqrt{b^2-4ac}}{2a},\frac{-b-i\sqrt{b^2-4ac}}{2a}[/tex]
So, There always exist a root with positive i and negative i.
So, one root of the polynomial is [tex](x-7+11i)[/tex] then the other root must be [tex](x-7-11i)[/tex]
Now, We have two roots so multiply them to find the polynomial.
[tex](x-7+11i)(x-7-11i)=0[/tex]
[tex]x^2-7x-11ix-7x+49+77i+11ix-77i-(11i)^2=0[/tex]
[tex]x^2-14x+49-121i^2=0[/tex]
[tex]x^2-14x+49+121=0[/tex]
[tex]x^2-14x+170=0[/tex]
Therefore, Option A is correct.