Respuesta :

Euler formula:
[tex]V-E+F=2[/tex]
Since [tex]F=4[/tex] then 
[tex]V-E+4=2\\V-E=-2\\V=E-2[/tex] and [tex]E=8[/tex] (check the figure)
So:
[tex]V=8-4=4[/tex] is the number of vertices.

Answer:

[tex]V=4[/tex]

Step-by-step explanation:

we know that

The Euler's formula state that, the number of vertices, minus the number of edges, plus the number of faces, is equal to two

Let

V----> the number of vertices

E------> the number of edges

F------> the number of faces

[tex]V - E + F = 2[/tex]

In this problem we have

[tex]F=4, E=6[/tex]

substitute in the formula and solve for V

[tex]V-6+4 = 2[/tex]

[tex]V-6+4 = 2[/tex]

[tex]V=4[/tex]

see the attached figure to better understand the problem


Ver imagen calculista
ACCESS MORE