Respuesta :
Euler formula:
[tex]V-E+F=2[/tex]
Since [tex]F=4[/tex] then
[tex]V-E+4=2\\V-E=-2\\V=E-2[/tex] and [tex]E=8[/tex] (check the figure)
So:
[tex]V=8-4=4[/tex] is the number of vertices.
[tex]V-E+F=2[/tex]
Since [tex]F=4[/tex] then
[tex]V-E+4=2\\V-E=-2\\V=E-2[/tex] and [tex]E=8[/tex] (check the figure)
So:
[tex]V=8-4=4[/tex] is the number of vertices.
Answer:
[tex]V=4[/tex]
Step-by-step explanation:
we know that
The Euler's formula state that, the number of vertices, minus the number of edges, plus the number of faces, is equal to two
Let
V----> the number of vertices
E------> the number of edges
F------> the number of faces
[tex]V - E + F = 2[/tex]
In this problem we have
[tex]F=4, E=6[/tex]
substitute in the formula and solve for V
[tex]V-6+4 = 2[/tex]
[tex]V-6+4 = 2[/tex]
[tex]V=4[/tex]
see the attached figure to better understand the problem
![Ver imagen calculista](https://us-static.z-dn.net/files/d9d/ea395bb2e4cf0dd185246ff02630dc31.jpg)