Respuesta :

Using the equivalence:

log_b(x)=log_e(x)/log_e(b)

(use base 10 or any other base if more convenient)

log_6(25)=log_e(25)/log_e(6)
=3.218876.../1.791759...
=1.796489...  (approximately)

Answer:

[tex]log_{6}(25)=1.796[/tex]

Step-by-step explanation:

We have to find the value of [tex]log_{6}(25)[/tex]

[tex]log_{6}(25)=\frac{log_{10}25}{log_{10}6}[/tex]

[Since [tex]log_{b}a=\frac{log_{10}a}{log_{10}b}[/tex]]

[tex]log_{6}(25)=\frac{1.39794}{0.77818}[/tex]

[tex]log_{6}(25)=1.796[/tex]

Therefore, [tex]log_{6}(25)=1.796[/tex] will be the answer.