Respuesta :
Using the equivalence:
log_b(x)=log_e(x)/log_e(b)
(use base 10 or any other base if more convenient)
log_6(25)=log_e(25)/log_e(6)
=3.218876.../1.791759...
=1.796489... (approximately)
log_b(x)=log_e(x)/log_e(b)
(use base 10 or any other base if more convenient)
log_6(25)=log_e(25)/log_e(6)
=3.218876.../1.791759...
=1.796489... (approximately)
Answer:
[tex]log_{6}(25)=1.796[/tex]
Step-by-step explanation:
We have to find the value of [tex]log_{6}(25)[/tex]
[tex]log_{6}(25)=\frac{log_{10}25}{log_{10}6}[/tex]
[Since [tex]log_{b}a=\frac{log_{10}a}{log_{10}b}[/tex]]
[tex]log_{6}(25)=\frac{1.39794}{0.77818}[/tex]
[tex]log_{6}(25)=1.796[/tex]
Therefore, [tex]log_{6}(25)=1.796[/tex] will be the answer.