Respuesta :
d = √ [ (∆x)² + (∆y)² ]
d = √ [ (3.2 – 2)² + (6 – 3.6)² ]
d = √ 7.2 = √ (36 ⁄ 5) = 6(√ 5) ⁄ 5 = 2.68 Hope this helps :)
d = √ [ (3.2 – 2)² + (6 – 3.6)² ]
d = √ 7.2 = √ (36 ⁄ 5) = 6(√ 5) ⁄ 5 = 2.68 Hope this helps :)
The distance between line l and point p is 5 units.
Given:
Line l contains points [tex](0,-2)[/tex] and [tex](6,6)[/tex].
Point P has the coordinates [tex](-1,5)[/tex].
To find:
The distance between line l and point P.
Explanation:
The equation of the line l is:
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]y-(-2)=\dfrac{6-(-2)}{6-0}(x-0)[/tex]
[tex]y+2=\dfrac{8}{6}x[/tex]
Multiply both sides by [tex]6[/tex].
[tex]6(y+2)=8x[/tex]
[tex]6y+12=8x[/tex]
[tex]0=8x-6y-12[/tex]
The distance between the line [tex]ax+by+c=0[/tex] and the point [tex](x_0,y_0)[/tex] is:
[tex]D=\dfrac{ax_0+by_0+c}{\sqrt{a^2+b^2}}[/tex]
The distance between the line [tex]8x-6y-12=0[/tex] and the point [tex](-1,5)[/tex].
[tex]D=\dfrac{8(-1)-6(5)-12}{\sqrt{(8)^2+(6)^2}}[/tex]
[tex]D=\dfrac{-8-30-12}{\sqrt{64+36}}[/tex]
[tex]D=\dfrac{50}{\sqrt{100}}[/tex]
[tex]D=\dfrac{50}{10}[/tex]
[tex]D=5[/tex]
Therefore, the distance between line l and point p is 5 units.
Learn more:
https://brainly.com/question/1522007