Respuesta :

d = √  [ (∆x)² + (∆y)²  ]

   d = √  [  (3.2 – 2)² + (6 – 3.6)²   ]

   d = √  7.2  =  √  (36 ⁄ 5)  =  6(√ 5) ⁄ 5  =  2.68 Hope this helps :)

The distance between line l and point p is 5 units.

Given:

Line l contains points [tex](0,-2)[/tex] and [tex](6,6)[/tex].

Point P has the coordinates [tex](-1,5)[/tex].  

To find:

The distance between line l and point P.

Explanation:

The equation of the line l is:

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

[tex]y-(-2)=\dfrac{6-(-2)}{6-0}(x-0)[/tex]

[tex]y+2=\dfrac{8}{6}x[/tex]

Multiply both sides by [tex]6[/tex].

[tex]6(y+2)=8x[/tex]

[tex]6y+12=8x[/tex]

[tex]0=8x-6y-12[/tex]

The distance between the line [tex]ax+by+c=0[/tex] and the point [tex](x_0,y_0)[/tex] is:

[tex]D=\dfrac{ax_0+by_0+c}{\sqrt{a^2+b^2}}[/tex]

The distance between the line [tex]8x-6y-12=0[/tex] and the point [tex](-1,5)[/tex].

[tex]D=\dfrac{8(-1)-6(5)-12}{\sqrt{(8)^2+(6)^2}}[/tex]

[tex]D=\dfrac{-8-30-12}{\sqrt{64+36}}[/tex]

[tex]D=\dfrac{50}{\sqrt{100}}[/tex]

[tex]D=\dfrac{50}{10}[/tex]

[tex]D=5[/tex]

Therefore, the distance between line l and point p is 5 units.

Learn more:

https://brainly.com/question/1522007