Find the maclaurin series for the function. (use the table of power series for elementary functions.) f(x) = (cos(x 6))2

Respuesta :

Space

Answer:

[tex]\displaystyle f(x) = \sum^{\infty}_{n = 0} \frac{x^{24n}}{[(2n)!]^2}[/tex]

General Formulas and Concepts:

Calculus

Sequences

Series

Power Series

  • Power Series of Elementary Functions
  • MacLaurin Series:                                                                                                [tex]\displaystyle P(x) = \sum^{\infty}_{n = 0} \frac{f^n(0)}{n!}x^n[/tex]
  • Taylor Series

Step-by-step explanation:

We are given the function:

[tex]\displaystyle f(x) = [cos(x^6)]^2[/tex]

Recall that the power series for cos(x) is:

[tex]\displaystyle cos(x) = \sum^{\infty}_{n = 0} \frac{(-1)^n x^{2n}}{(2n)!}[/tex]

To find the power series for cos(x⁶), substitute in x = x⁶:

[tex]\displaystyle cos(x^6) = \sum^{\infty}_{n = 0} \frac{(-1)^n (x^6)^{2n}}{(2n)!}[/tex]

Simplifying it, we have:

[tex]\displaystyle cos(x^6) = \sum^{\infty}_{n = 0} \frac{(-1)^n x^{12n}}{(2n)!}[/tex]

Rewrite the original function:

[tex]\displaystyle f(x) = \bigg[ \sum^{\infty}_{n = 0} \frac{(-1)^n x^{12n}}{(2n)!} \bigg]^2[/tex]

Simplify:

[tex]\displaystyle f(x) = \sum^{\infty}_{n = 0} \frac{(-1)^{2n} x^{24n}}{[(2n)!]^2}[/tex]

Simplify down further:

[tex]\displaystyle f(x) = \sum^{\infty}_{n = 0} \frac{x^{24n}}{[(2n)!]^2}[/tex]

And we have our final answer.

Topic: AP Calculus BC (Calculus I + II)  

Unit: Power Series  

Book: College Calculus 10e

ACCESS MORE