Respuesta :

Parameterize the region [tex]\mathcal S[/tex] by

[tex]x=u\cos v[/tex]
[tex]y=u\sin v[/tex]
[tex]2x+y+2z=0\implies z=-x-\dfrac y2=-u\cos v-\dfrac{u\sin v}2[/tex]
[tex]\implies\mathbf r(u,v)=(x(u,v),y(u,v),z(u,v))[/tex]

with [tex]0\le u\le2[/tex] and [tex]0\le v\le2\pi[/tex]. Then we have surface element

[tex]\mathrm dS=\|\mathbf r_u\times\mathbf r_v\|\,\mathrm du\,\mathrm dv=\dfrac{3u}2\,\mathrm du\,\mathrm dv[/tex]

so the surface integral becomes

[tex]\displaystyle\frac32\int_{v=0}^{v=2\pi}\int_{u=0}^{u=2}u^2\sin v\left(u\cos v-\dfrac{u\sin v}2\right)\,\mathrm du\,\mathrm dv=-3\pi[/tex]
ACCESS MORE