Respuesta :
Answer:
The first positive x-intercept for the function [tex]f(x) = 2cos(x + 3)[/tex] is [tex](1.712, 0)[/tex].
Step-by-step explanation:
The x-intercept is the point where a line crosses the x-axis,
To find the x-intercept for the function [tex]f(x) = 2cos(x + 3)[/tex], let's substitute f(x) = 0 into the equation and solve for x:
[tex]2\cos \left(x+3\right)=0\\\\\frac{2\cos \left(x+3\right)}{2}=\frac{0}{2}\\\\\mathrm{General\:solutions\:for}\:\cos \left(x+3\right)=0\\\\x+3=\frac{\pi }{2}+2\pi n,\:x+3=\frac{3\pi }{2}+2\pi n[/tex]
We want the value of the first positive x-intercept so we take the value of [tex]x=\frac{3\pi }{2}+2\pi n-3[/tex] when n = 0.
[tex]x=\frac{3\pi}{2}+2\pi\cdot 0-3\\\\x=\frac{3\pi }{2}-3\approx 1.712[/tex]
We can check our answer with the graph of the function. We can see that we get the same answer.
![Ver imagen franciscocruz28](https://us-static.z-dn.net/files/d43/b1d4bbec5315d3224faa57ef3ad4aa4d.png)