Respuesta :

your answers are A C D

Answer:

Option (3) and (4) are correct.

The equivalent expressions to given expression [tex]\sqrt[3]{128}x[/tex] are [tex]4\sqrt[3]{2}x[/tex] and [tex]4(2)^{\frac{1}{3}}x[/tex]

Step-by-step explanation:

Given expression [tex]\sqrt[3]{128}x[/tex]

We have to write the simplified  form of the given expressions and choose from the given options.

Consider the given expression [tex]\sqrt[3]{128}x[/tex]

factorization is a way of writing a numbers as the product of its prime factors.

Thus,  128 can be written as  2 × 2 × 2 × 2 × 2 × 2 × 2 = [tex]2^7[/tex]

So, the given expression [tex]\sqrt[3]{128}x[/tex] is written as [tex]\sqrt[3]{2^7}x[/tex]

[tex]\sqrt[3]{2^7}x[/tex]  can be written as [tex]4\sqrt[3]{2}x[/tex]

Also, [tex]\sqrt[3]{a}=a^{\frac{1}{3} }[/tex]

Thus, [tex]4\sqrt[3]{2}x[/tex] is same as writing  [tex]4(2)^{\frac{1}{3}}x[/tex]

So, only option (3) and (4) are correct.

ACCESS MORE