Use the distance formula, and plug in values.
[tex]d = \sqrt{(x_{2}-x_{1} )^{2}+(y_{2}-y_{1} )^{2}} [/tex]
[tex]d = \sqrt{( -4-4 )^{2}+( -4-2 )^{2}}[/tex]
[tex]d = \sqrt{( -8 )^{2}+( -6 )^{2}} [/tex]
[tex]d = \sqrt{64+36} [/tex]
[tex]d= \sqrt{100}[/tex]
Therefore, the distance is equal to "10".