Respuesta :
Answer:
The measure of ∠B is 18.9°
Step-by-step explanation:
Given triangle ABC in which
∠A = 120°, a = 8, and b = 3
we have to find ∠B
By sine law,
[tex]\frac{\sin \angle A}{a}=\frac{\sin \angle B}{b}=\frac{\sin \angle C}{c}[/tex]
[tex]\frac{\sin \angle A}{a}=\frac{\sin \angle B}{b}[/tex]
[tex]\frac{\sin 120^{\circ}}{8}=\frac{\sin \angle B}{3}[/tex]
[tex]\sin \angle B=3\frac{\sin 120^{\circ}}{8}=\frac{3}{16}\sqrt3[/tex]
[tex]\angle B=sin^{-1}(\frac{3}{16}\sqrt3)=18.951\sim 18.9^{\circ}[/tex]
The measure of ∠B is 18.9°
