Respuesta :

BG = 1/3(BE) = 1/3 (9) = 3
GE = 2/3(BE) = 2/3 (9) = 6

hope it helps

The centroid point G divides the segment [tex]\overline{BE}[/tex] in the ration 2 : 1, such that

[tex]\overline{GE}[/tex] is twice the length of [tex]\overline{BE}[/tex].

  • [tex]\underline{\mathrm{\overline{BG} \ is \ 3 \ and \ \overline{GE} \ is \ 6}}[/tex]

Reasons:

The given parameter are;

The centroid of ΔACE = Point G

The length of BE = 9

Required:

The length of [tex]\overline{BG}[/tex] and [tex]\overline{GE}[/tex]

Solution:

By centroid relationship, we have;

[tex]\overline{BG} = \mathbf{ \dfrac{1}{3} \times \overline{BE}}[/tex]

Therefore;

[tex]\overline{BG} = \dfrac{1}{3} \times 9 = 3[/tex]

[tex]\overline{BG}[/tex] = 3

Similarly, by the relationship between the centroid, G, [tex]\overline{GE}[/tex] and [tex]\overline{BE}[/tex] we have;

[tex]\overline{GE} =\mathbf{ \dfrac{2}{3} \times \overline{BE}}[/tex]

Which gives;

[tex]\overline{GE} = \dfrac{2}{3} \times9 = 6[/tex]

[tex]\overline{GE}[/tex] = 6

Learn more here:

https://brainly.com/question/12549436

ACCESS MORE