In ACE, G is the centroid and BE=9. Find BG and GE
![In ACE G is the centroid and BE9 Find BG and GE class=](https://us-static.z-dn.net/files/d8c/f1c82a08ac1a7c3cdfebcd1c9360bae7.png)
The centroid point G divides the segment [tex]\overline{BE}[/tex] in the ration 2 : 1, such that
[tex]\overline{GE}[/tex] is twice the length of [tex]\overline{BE}[/tex].
Reasons:
The given parameter are;
The centroid of ΔACE = Point G
The length of BE = 9
Required:
The length of [tex]\overline{BG}[/tex] and [tex]\overline{GE}[/tex]
Solution:
By centroid relationship, we have;
[tex]\overline{BG} = \mathbf{ \dfrac{1}{3} \times \overline{BE}}[/tex]
Therefore;
[tex]\overline{BG} = \dfrac{1}{3} \times 9 = 3[/tex]
[tex]\overline{BG}[/tex] = 3
Similarly, by the relationship between the centroid, G, [tex]\overline{GE}[/tex] and [tex]\overline{BE}[/tex] we have;
[tex]\overline{GE} =\mathbf{ \dfrac{2}{3} \times \overline{BE}}[/tex]
Which gives;
[tex]\overline{GE} = \dfrac{2}{3} \times9 = 6[/tex]
[tex]\overline{GE}[/tex] = 6
Learn more here:
https://brainly.com/question/12549436