N circle o, radius oq measures 9 inches and arc pq measures 6π inches. what is the measure, in radians, of central angle poq? 2pi/3 radians 3pi/4 centimeters 4pi/3 radians 3pi/2 radians

Respuesta :

 θ = 6π/9 =  2π/3  radians

Answer: [tex]\frac{2\pi}{3}[/tex] radians

Step-by-step explanation:

Given: In circle O, the radius of circle = 9 inches

The arc length of PQ= [tex]6\pi[/tex] inches

Let [tex]\theta[/tex] be the measure of the angle .

The formula to calculate arc length(l) for radius r and angle x is given by :-

[tex]l=r*\x\\\\\Rightarrow\ x=\frac{l}{r}[/tex]

According to the question we have,

[tex]\theta=\frac{6\pi}{9}=\frac{2\pi}{3}[/tex]

Hence, the measure, of central angle POQ= [tex]\frac{2\pi}{3}[/tex] radians