Respuesta :
Answers are choice 2 (-1,4) and choice 1 (3 1/64)
Just took the test, Hope this helps!
The points on the graph of a function are the true values of the function
The points on the graph of [tex]\mathbf{k(x) = (\frac{1}{4})^x}[/tex] are (a) (3, 1/64), (b) (-1, 4) and (d) (1, 4)
The function is given as:
[tex]\mathbf{k(x) = (\frac{1}{4})^x}[/tex]
(a) (3, 1/64)
Substitute 3 for x
[tex]\mathbf{k(3) = (\frac{1}{4})^3}[/tex]
Expand
[tex]\mathbf{k(3) = \frac{1}{64}}[/tex]
Hence, (3,1/164) is true
(b) (-1, 4)
Substitute -1 for x
[tex]\mathbf{k(-1) = (\frac{1}{4})^{-1}}[/tex]
Simplify
[tex]\mathbf{k(-1) = 4}[/tex]
Hence, (-1,4) is true
(c) (0, 1/4)
Substitute 0 for x
[tex]\mathbf{k(0) = (\frac{1}{4})^{0}}[/tex]
Simplify
[tex]\mathbf{k(0) = 1}[/tex]
Hence, (0,1/4) is false
(d) (1, 4)
Substitute 1 for x
[tex]\mathbf{k(1) = (\frac{1}{4})^{1}}[/tex]
Evaluate the exponents
[tex]\mathbf{k(1) = \frac 14}[/tex]
Hence, (1,4) is true
Hence, the points on the graph of [tex]\mathbf{k(x) = (\frac{1}{4})^x}[/tex] are (a) (3, 1/64), (b) (-1, 4) and (d) (1, 4)
Read more about points on a graph at:
https://brainly.com/question/18386618