Respuesta :

Answers are choice 2 (-1,4) and choice 1 (3 1/64)


Just took the test, Hope this helps!

The points on the graph of a function are the true values of the function

The points on the graph of [tex]\mathbf{k(x) = (\frac{1}{4})^x}[/tex] are (a) (3, 1/64), (b) (-1, 4) and (d) (1, 4)

The function is given as:

[tex]\mathbf{k(x) = (\frac{1}{4})^x}[/tex]

(a) (3, 1/64)

Substitute 3 for x

[tex]\mathbf{k(3) = (\frac{1}{4})^3}[/tex]

Expand

[tex]\mathbf{k(3) = \frac{1}{64}}[/tex]

Hence, (3,1/164) is true

(b) (-1, 4)

Substitute -1 for x

[tex]\mathbf{k(-1) = (\frac{1}{4})^{-1}}[/tex]

Simplify

[tex]\mathbf{k(-1) = 4}[/tex]

Hence, (-1,4) is true

(c) (0, 1/4)

Substitute 0 for x

[tex]\mathbf{k(0) = (\frac{1}{4})^{0}}[/tex]

Simplify

[tex]\mathbf{k(0) = 1}[/tex]

Hence, (0,1/4) is false

(d) (1, 4)

Substitute 1 for x

[tex]\mathbf{k(1) = (\frac{1}{4})^{1}}[/tex]

Evaluate the exponents

[tex]\mathbf{k(1) = \frac 14}[/tex]

Hence, (1,4) is true

Hence, the points on the graph of [tex]\mathbf{k(x) = (\frac{1}{4})^x}[/tex] are (a) (3, 1/64), (b) (-1, 4) and (d) (1, 4)

Read more about points on a graph at:

https://brainly.com/question/18386618

ACCESS MORE