Respuesta :
Answer: [tex]\angle BAC=35^{\circ}[/tex]
Explanation:
Here, In [tex]\triangle ABC[/tex], Side AC is the base. A ray extends through vertex C and passes through a point labeled as D.
And, [tex]\angle BCD=120^{\circ}[/tex] and [tex]\angle ABC=85^{\circ}[/tex]
Since, [tex]\angle BCD[/tex] is the exterior angle of the [tex]\triangle ABC[/tex]
Therefore, by the property of exterior angle,
[tex]\angle ABC+\angle BAC=120^{\circ}[/tex]
⇒[tex]\angle BAC=120^{\circ}-85^{\circ}=35^{\circ}[/tex]
![Ver imagen parmesanchilliwack](https://us-static.z-dn.net/files/d5d/36152b5e56626debf96491de79c9bb35.jpg)
Answer:
35 degrees
Step-by-step explanation:
ABC is given 85*
BCD is given 120*
From BCD we can determine BCA which is 60*
85 plus 60= 145
180-145=35
BAC is 35*