We want to find [tex]\displaystyle{ \frac{dy}{dx} [/tex], for
[tex]\displaystyle{ y=(x^2+2)^3(x^3+3)^2[/tex].
Recall the product rule: for 2 differentiable functions f and g, the derivative of their product is as follows:
[tex](fg)'=f'g+g'f[/tex].
Thus,
[tex]y'=[(x^2+2)^3]'[(x^3+3)^2]+[(x^3+3)^2]'[(x^2+2)^3]\\\\ =3(x^2+2)^2(x^3+3)^2+2(x^3+3)(x^2+2)^3[/tex]
Answer: A) [tex]3(x^2+2)^2(x^3+3)^2+2(x^3+3)(x^2+2)^3[/tex].