What is the value of the element in row 1, column 1 of matrix C?
![What is the value of the element in row 1 column 1 of matrix C class=](https://us-static.z-dn.net/files/d1f/6401b9ec09422f20ef9a8b639923e90f.png)
Answer:
-3y
------
4
Step-by-step explanation:
I just took that and got it right
Answer:
Option A is correct.
Step-by-step explanation:
We given with [tex]\begin{bmatrix}4&y\\0&1\end{bmatrix}X=\begin{bmatrix}y\\4\end{bmatrix}[/tex]
We have to find Element in row 1 and column 1 of Matrix C.
Matrix C is Matrix X.
So, we have
[tex]X=\begin{bmatrix}4&y\\0&1\end{bmatrix}^{-1}\begin{bmatrix}y\\4\end{bmatrix}[/tex]
So first we find inverse of first matrix,
Inverse of matrix A is given by [tex]\frac{1}{\left|A\right|}Adj\,A[/tex]
let, [tex]A=\begin{bmatrix}4&y\\0&1\end{bmatrix}[/tex]
then,
[tex]Adj\,A=\begin{bmatrix}1&-y\\0&4\end{bmatrix}[/tex]
|A| = 4 × 1 - 0 × y = 4
So, [tex]X=\frac{1}{\left|A\right|}Adj\,A\times\begin{bmatrix}y\\4\end{bmatrix}[/tex]
[tex]=\frac{1}{4}\begin{bmatrix}1&-y\\0&4\end{bmatrix}\begin{bmatrix}y\\4\end{bmatrix}[/tex]
[tex]=\frac{1}{4}\begin{bmatrix}1\times y+(-y)\times4\\0\times y+4\times4\end{bmatrix}[/tex]
[tex]=\frac{1}{4}\begin{bmatrix}y-4y\\16\end{bmatrix}[/tex]
[tex]=\frac{1}{4}\begin{bmatrix}-3y\\16\end{bmatrix}[/tex]
[tex]=\begin{bmatrix}\frac{-3y}{4}\\\frac{16}{4}\end{bmatrix}[/tex]
[tex]=\begin{bmatrix}\frac{-3y}{4}\\4\end{bmatrix}[/tex]
Element at row 1 and column 1 of matrix is [tex]\frac{-3y}{4}[/tex]
Therefore, Option A is correct.