Respuesta :
Given the midpoint and one endpoint of a line segment, find the other endpoint.
Endpoint: (-9, -1), midpoint: (8, 14)
Endpoint: (-9, -1), midpoint: (8, 14)
![Ver imagen rgwoot](https://us-static.z-dn.net/files/d37/7af3a55989c2578e6d9ec8bfbce2543f.jpg)
[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points }\\ \quad \\
\begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&&(~{{ -9}} &,&{{ -1}}~)
% (c,d)
&&(~{{ x}} &,&{{ y}}~)
\end{array}\qquad
% coordinates of midpoint
\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)[/tex]
[tex]\bf \left( \cfrac{x-9}{2}~~,~~\cfrac{y-1}{2} \right)=\stackrel{midpoint}{(8~~,~~14)}\implies \begin{cases} \cfrac{x-9}{2}=8\\\\ x-9=16\\ \boxed{x=25}\\ -------\\ \cfrac{y-1}{2}=14\\\\ y-1=28\\ \boxed{y=29} \end{cases}[/tex]
[tex]\bf \left( \cfrac{x-9}{2}~~,~~\cfrac{y-1}{2} \right)=\stackrel{midpoint}{(8~~,~~14)}\implies \begin{cases} \cfrac{x-9}{2}=8\\\\ x-9=16\\ \boxed{x=25}\\ -------\\ \cfrac{y-1}{2}=14\\\\ y-1=28\\ \boxed{y=29} \end{cases}[/tex]