Respuesta :
Hello there, hope I can help.
I assume you mean [tex]\left(x^{\frac{1}{2}}\right)^{\frac{1}{6}}[/tex]
With this, let us begin
[tex]\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^{bc}, \mathrm{\:assuming\:}a\ge \:0 \ \textgreater \ x^{\frac{1}{2}\cdot \frac{1}{6}}[/tex]
[tex]\frac{1}{2}\cdot \frac{1}{6} \ \textgreater \ \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \ \frac{1\cdot \:1}{2\cdot \:6} \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a[/tex]
[tex]\frac{1}{2\cdot \:6} \ \textgreater \ \frac{1}{12} \ \textgreater \ x^{\frac{1}{12}}[/tex]
Hope this helps!
I assume you mean [tex]\left(x^{\frac{1}{2}}\right)^{\frac{1}{6}}[/tex]
With this, let us begin
[tex]\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^{bc}, \mathrm{\:assuming\:}a\ge \:0 \ \textgreater \ x^{\frac{1}{2}\cdot \frac{1}{6}}[/tex]
[tex]\frac{1}{2}\cdot \frac{1}{6} \ \textgreater \ \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \ \frac{1\cdot \:1}{2\cdot \:6} \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a[/tex]
[tex]\frac{1}{2\cdot \:6} \ \textgreater \ \frac{1}{12} \ \textgreater \ x^{\frac{1}{12}}[/tex]
Hope this helps!