Respuesta :

Hello there, hope I can help!

I assume you mean [tex]L\left\{\frac{ekt+e-kt}{2}\right\}[/tex]
With that, let's begin

[tex]\frac{ekt+e-kt}{2}=\frac{ekt}{2}+\frac{e}{2}-\frac{kt}{2} \ \textgreater \ L\left\{\frac{ekt}{2}-\frac{kt}{2}+\frac{e}{2}\right\}[/tex]

[tex]\mathrm{Use\:the\:linearity\:property\:of\:Laplace\:Transform}[/tex]
[tex]\mathrm{For\:functions\:}f\left(t\right),\:g\left(t\right)\mathrm{\:and\:constants\:}a,\:b[/tex]
[tex]L\left\{a\cdot f\left(t\right)+b\cdot g\left(t\right)\right\}=a\cdot L\left\{f\left(t\right)\right\}+b\cdot L\left\{g\left(t\right)\right\}[/tex]
[tex]\frac{ek}{2}L\left\{t\right\}+L\left\{\frac{e}{2}\right\}-\frac{k}{2}L\left\{t\right\}[/tex]

[tex]L\left\{t\right\} \ \textgreater \ \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{t\right\}=\frac{1}{s^2} \ \textgreater \ L\left\{t\right\}=\frac{1}{s^2}[/tex]

[tex]L\left\{\frac{e}{2}\right\} \ \textgreater \ \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{a\right\}=\frac{a}{s} \ \textgreater \ L\left\{\frac{e}{2}\right\}=\frac{\frac{e}{2}}{s} \ \textgreater \ \frac{e}{2s}[/tex]

[tex]\frac{ek}{2}\cdot \frac{1}{s^2}+\frac{e}{2s}-\frac{k}{2}\cdot \frac{1}{s^2}[/tex]

[tex]\frac{ek}{2}\cdot \frac{1}{s^2} \ \textgreater \ \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \ \frac{ek\cdot \:1}{2s^2} \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a[/tex]
[tex]\frac{ek}{2s^2}[/tex]

[tex]\frac{k}{2}\cdot \frac{1}{s^2} \ \textgreater \ \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \ \frac{k\cdot \:1}{2s^2} \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a[/tex]
[tex]\frac{k}{2s^2}[/tex]

[tex]\frac{ek}{2s^2}+\frac{e}{2s}-\frac{k}{2s^2}[/tex]

Hope this helps!
ACCESS MORE