Answer:
Part 1) The quadratic equation has zero real solutions
Part 2) The solutions are
[tex]x_1=-4+2i[/tex] and [tex]x_2=-4-2i[/tex]
Step-by-step explanation:
we know that
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^{2}+8x+20=0[/tex]
so
[tex]a=1\\b=8\\c=20[/tex]
The discriminant is equal to
[tex]D=(b^{2}-4ac)[/tex]
If D=0 -----> the quadratic equation has only one real solution
If D>0 -----> the quadratic equation has two real solutions
If D<0 -----> the quadratic equation has two complex solutions
Find the value of D
[tex]D=8^{2}-4(1)(20)=-16[/tex] -----> the quadratic equation has two complex solutions
Find out the solutions
substitute the values of a,b and c in the formula
[tex]x=\frac{-8(+/-)\sqrt{8^{2}-4(1)(20)}} {2(1)}[/tex]
[tex]x=\frac{-8(+/-)\sqrt{-16}} {2}[/tex]
Remember that
[tex]i=\sqrt{-1}[/tex]
[tex]x=\frac{-8(+/-)4i} {2}[/tex]
[tex]x_1=\frac{-8(+)4i} {2}=-4+2i[/tex]
[tex]x_2=\frac{-8(-)4i} {2}=-4-2i[/tex]