Which ordered pair is a solution for the system of equations? {3x−5y=152x−y=−4 (−5, −6) (0, 3) (2, 8) (−6, −11)

Respuesta :

3x-5y =15

2x-y=-4 
multiply the equation by 5 and then subtract   equation 2 from equation 1
so 3x-5y =15
    10x-5y =-20
-7x =35 x =-5  
plug in the value of x in the second equation -10 -y =-4  - y= -4 +10 y =-6
x=-5 y=-6



Answer:

(−5, −6)

Step-by-step explanation:

GIVEN : [tex]3x-5y = 15[/tex]


             [tex]2x-y = -4[/tex]

SOLUTION:

[tex]3x-5y = 15[/tex]   ------EQUATION 1


[tex]2x-y = -4[/tex]     ------ EQUATION 2


Now multiply the equation 2 by 5


[tex]5(2x-y = -4)[/tex]  


⇒[tex]10x-5y = -20[/tex]      ---(a)


Now , subtract (a) from equation i.e


[tex]3x-5y-15-(10x-5y+20) = 0[/tex]


[tex]3x-5y-15-10x+5y-20) = 0[/tex]


[tex] -7x-35 = 0[/tex]


[tex] -7x=35[/tex]


[tex]x=\frac{35}{-7}[/tex]


[tex] x=-5 [/tex]


put x = - 5 in equation 1 to get value of y


[tex]3(-5)-5y = 15[/tex]


[tex]-15-5y = 15[/tex]


[tex]-5y = 15+15[/tex]


[tex]-5y = 30[/tex]


[tex]y = \frac{30}{-5}[/tex]


[tex]y = -6[/tex]


Thus (x,y) =(-5,-6) is a solution.




 

ACCESS MORE