Answer:
[tex]Slope\ A'B'=5[/tex]
[tex]Slope\ B'C'=0.25[/tex]
[tex]length\ C'D'=5.4\ units[/tex]
[tex]length\ A'D'=8.4\ units[/tex]
Step-by-step explanation:
we know that
Polygon ABCD and Polygon A'B'C'D' are similar
therefore
The slopes of the sides of polygon ABCD are the same of the slopes of the sides of polygon A'B'C'D'
and
the measurements of the sides of polygon A'B'C'D' are equal to the measurements of the sides of polygon ABCD multiply by the scale factor
we have
[tex]scale\ factor=1.2[/tex]
so
Find the slopes of the dilated figure
[tex]Slope\ A'B'=Slope\ AB=5[/tex]
[tex]Slope\ B'C'=Slope\ BC=0.25[/tex]
Find the length sides of the dilated figure
Find the length side of C'D'
[tex]length\ C'D'=scale\ factor*length\ CD[/tex]
we have
[tex]scale\ factor=1.2[/tex]
[tex]length\ CD=4.5\ units[/tex]
substitute
[tex]length\ C'D'=1.2*4.5=5.4\ units[/tex]
Find the length side of A'D'
[tex]length\ A'D'=scale\ factor*length\ AD[/tex]
we have
[tex]scale\ factor=1.2[/tex]
[tex]length\ AD=7\ units[/tex]
substitute
[tex]length\ A'D'=1.2*7=8.4\ units[/tex]