Respuesta :
Here you need to calculate the magnitude and phase angle of the quantity 2 + 2i.
The magnitude is found using the Pyth. Thm. and is sqrt(2^2 + 2^2), or [tex] \sqrt{8} [/tex], or 2[tex] \sqrt{2} [/tex]
Recognize that the phase angle is 45 deg, or [tex] \pi [/tex]/4 rad.
Thus, the complex form is (2sqrt(2) angle [tex] \pi [/tex]/4 rad ).
The magnitude is found using the Pyth. Thm. and is sqrt(2^2 + 2^2), or [tex] \sqrt{8} [/tex], or 2[tex] \sqrt{2} [/tex]
Recognize that the phase angle is 45 deg, or [tex] \pi [/tex]/4 rad.
Thus, the complex form is (2sqrt(2) angle [tex] \pi [/tex]/4 rad ).
Answer:
[tex]z=\sqrt{8} (cos(45\°) + isin(45\°))[/tex]
Step-by-step explanation:
The polar form of a complex number is
[tex]z=r(cos\theta + isin\theta)[/tex]
Where [tex]r=\sqrt{a^{2} +b^{2} }[/tex], [tex]a=rcos\theta[/tex], [tex]b=rsin\theta[/tex] and [tex]\theta = tan^{-1}(\frac{b}{a} )[/tex]
In this case, we have the number [tex]2+2i[/tex], where [tex]a=2[/tex] and [tex]b=2[/tex], so the module [tex]r[/tex] is
[tex]r=\sqrt{a^{2} +b^{2} }=\sqrt{2^{2} +2^{2} }=\sqrt{4+4}=\sqrt{8}[/tex]
And the angle is
[tex]\theta = tan^{-1}(\frac{2}{2} )\\\theta=tan^{-1}(1)\\\theta = 45\°[/tex]
Therefore, the polar form of the given complex number is
[tex]z=\sqrt{8} (cos(45\°) + isin(45\°))[/tex]