Given the function
[tex]f(x)=3\left(\frac{1}{4}\right)^x[/tex]
When x = -2
[tex]f(-2)=3\left(\frac{1}{4}\right)^{-2} \\ \\ =3(4)^2=3(16)=48[/tex]
Thus, (-2, 48) lies on the graph of the given function.
When x = 0
[tex]f(0)=3\left(\frac{1}{4}\right)^{0} \\ \\ =3(1)=3[/tex]
Thus, (0, 3) lies on the graph of the given function.
When x = 2
[tex]f(2)=3\left(\frac{1}{4}\right)^{2} \\ \\ =3\left(\frac{1}{16}\right)=\frac{3}{16}[/tex]
Thus, (2, 3/16) lies on the graph of the given function.
When x = 12
[tex]f(12)=3\left(\frac{1}{4}\right)^{12} \\ \\ =3\left(\frac{1}{16777216}\right)=\frac{3}{16777216}\approx0[/tex]
Thus, (12, 0) lies on the graph of the given function.