Respuesta :
You are essentially minimizing [tex]x^2+y^2+z^2[/tex] subject to [tex]y^2=25+xz[/tex]. (The distance between the origin and any point [tex](x,y,z)[/tex] on the given surface is [tex]\sqrt{x^2+y^2+z^2}[/tex], but [tex]\sqrt{\mathrm{func}}[/tex] and [tex]\mathrm{func}[/tex] share the same critical points.)
Via Lagrange multipliers, we have Lagrangian
[tex]L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(y^2-xz-25)[/tex]
with partial derivatives (set equal to 0)
[tex]L_x=2x-\lambda z=0\implies 2x=\lambda z[/tex]
[tex]L_y=2y+2\lambda y=0\implies y(1+\lambda)=0[/tex]
[tex]L_z=2z-\lambda x=0\implies 2z=\lambda x[/tex]
[tex]L_\lambda=y^2-xz-25=0\implies y^2=xz+25[/tex]
[tex]L_x=0\implies zL_x=0\implies 2xz=\lambda z^2[/tex]
[tex]L_z=0\implies xL_z=0\implies 2xz=\lambda x^2[/tex]
[tex]zL_x-xL_z=\lambda(z^2-x^2)=0[/tex]
We assume [tex]\lambda\neq0[/tex], which means [tex]z^2=x^2\implies |z|=|x|[/tex].
[tex]L_y=0\implies y(1+\lambda)=0\implies y=0\text{ or }\lambda=-1[/tex]
In the first case, we have
[tex]y^2=25+xz\implies -xz=25[/tex]
which means one of [tex]x,z[/tex] must be positive, and the other is negative. From [tex]|x|=|z|[/tex] we have [tex]x=-z[/tex], so
[tex]-(-z)z=z^2=25\implies z=\pm5\implies x=\mp5[/tex]
So we get two critical points, (-5, 0, 5) and (5, 0, -5).
In the second case, if [tex]\lambda=-1[/tex], we get
[tex]\begin{cases}2x=-z\\2z=-x\end{cases}\implies x=z=0[/tex]
which leads us to
[tex]y^2=25\implies y=\pm5[/tex]
i.e. we have two additional critical points (0, 5, 0) and (0, -5, 0).
At each of these points, we get respective distances from the origin of [tex]\{5\sqrt2,5\sqrt2,5,5\}[/tex], so the two closest points to the origin on the surface [tex]y^2=25+xz[/tex] are (0, 5, 0) and (0, -5, 0).
Via Lagrange multipliers, we have Lagrangian
[tex]L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(y^2-xz-25)[/tex]
with partial derivatives (set equal to 0)
[tex]L_x=2x-\lambda z=0\implies 2x=\lambda z[/tex]
[tex]L_y=2y+2\lambda y=0\implies y(1+\lambda)=0[/tex]
[tex]L_z=2z-\lambda x=0\implies 2z=\lambda x[/tex]
[tex]L_\lambda=y^2-xz-25=0\implies y^2=xz+25[/tex]
[tex]L_x=0\implies zL_x=0\implies 2xz=\lambda z^2[/tex]
[tex]L_z=0\implies xL_z=0\implies 2xz=\lambda x^2[/tex]
[tex]zL_x-xL_z=\lambda(z^2-x^2)=0[/tex]
We assume [tex]\lambda\neq0[/tex], which means [tex]z^2=x^2\implies |z|=|x|[/tex].
[tex]L_y=0\implies y(1+\lambda)=0\implies y=0\text{ or }\lambda=-1[/tex]
In the first case, we have
[tex]y^2=25+xz\implies -xz=25[/tex]
which means one of [tex]x,z[/tex] must be positive, and the other is negative. From [tex]|x|=|z|[/tex] we have [tex]x=-z[/tex], so
[tex]-(-z)z=z^2=25\implies z=\pm5\implies x=\mp5[/tex]
So we get two critical points, (-5, 0, 5) and (5, 0, -5).
In the second case, if [tex]\lambda=-1[/tex], we get
[tex]\begin{cases}2x=-z\\2z=-x\end{cases}\implies x=z=0[/tex]
which leads us to
[tex]y^2=25\implies y=\pm5[/tex]
i.e. we have two additional critical points (0, 5, 0) and (0, -5, 0).
At each of these points, we get respective distances from the origin of [tex]\{5\sqrt2,5\sqrt2,5,5\}[/tex], so the two closest points to the origin on the surface [tex]y^2=25+xz[/tex] are (0, 5, 0) and (0, -5, 0).
Using lagrange multipliers, it is found that the points are: (0,-5,0) and (0,5,0).
------------------------------
The distance from any point to the origin is:
[tex]d = \sqrt{x^2 + y^2 + z^2}[/tex]
Thus, we want to minimize:
[tex]d^2 = f(x,y,z) = x^2 + y^2 + z^2[/tex]
The restriction is:
[tex]g(x,y,z) = 0[/tex]
[tex]-xz + y^2 - 25 = 0[/tex]
The gradients are:
[tex]\nabla_f = (2x, 2y, 2z)[/tex]
[tex]\nabla_g = (-z, 2y, -x)[/tex]
The relations to build a system are:
[tex]\nabla_f = \lambda\nabla_g[/tex]
[tex](2x, 2y, 2z) = \lambda(-z, 2y, -x)[/tex]
[tex]2x = -\lambda z[/tex]
[tex]2y = 2y\lambda[/tex]
[tex]2z = -\lambda x[/tex]
The restriction [tex]-xz + y^2 - 25 = 0[/tex] is also considered.
From the second equation, [tex]\lambda = 1[/tex], and then:
[tex]z = -2x[/tex]
[tex]x = -2z[/tex]
[tex]x = 4x[/tex]
Which is only true for x = z = 0.
Then, in the restriction:
[tex]-xz + y^2 - 25 = 0[/tex]
[tex]y^2 = 25[/tex]
[tex]y = \pm \sqrt{25}[/tex]
[tex]y = \pm 5[/tex]
Thus, the points are: (0, -5, 0) and (0, 5, 0).
A similar problem is given at https://brainly.com/question/4609414