Respuesta :
The given equation may be simplified as follows:
x² + 14xy + 49y² = 100
(x + 7y)(x + 7y) = 100
(x + 7y)² = 10²
x + 7y = 10
This is a straight line with the equation
y = -(1/7)x + 10/7
The minimum distance from the origin to this line is provided by a straight line that passes through the origin and which is perpendicular to the straight line.
The slope of the perpendicular line is 7 because the product of the two slopes should be -1.
The perpendicular line is of the form
y = 7x + c.
Because the line passes through (0,0), therefore c = 0.
The line y = 7x intercepts the original line when
y = 7x = -(1/7)x + 10/7
Therefore
7x = -(1/7)x + 10/7
Multiply through by 7.
49x = -x + 10
50x = 10
x = 1/5
y = 7x = 7/5
The minimum distance is
d = √(x² + y²)
= √[(1/5)² + (7/5)²]
= √2
The point is (1/5, 7/5).
Answer: (1/5, 7/5) or (0.2, 1.4)
x² + 14xy + 49y² = 100
(x + 7y)(x + 7y) = 100
(x + 7y)² = 10²
x + 7y = 10
This is a straight line with the equation
y = -(1/7)x + 10/7
The minimum distance from the origin to this line is provided by a straight line that passes through the origin and which is perpendicular to the straight line.
The slope of the perpendicular line is 7 because the product of the two slopes should be -1.
The perpendicular line is of the form
y = 7x + c.
Because the line passes through (0,0), therefore c = 0.
The line y = 7x intercepts the original line when
y = 7x = -(1/7)x + 10/7
Therefore
7x = -(1/7)x + 10/7
Multiply through by 7.
49x = -x + 10
50x = 10
x = 1/5
y = 7x = 7/5
The minimum distance is
d = √(x² + y²)
= √[(1/5)² + (7/5)²]
= √2
The point is (1/5, 7/5).
Answer: (1/5, 7/5) or (0.2, 1.4)
![Ver imagen Аноним](https://us-static.z-dn.net/files/da8/dc0a44abc8a3c8a812b090f97e3e5719.jpg)