In the figure, AB||CB. If CD:BA = 6:5 and the area of CED is 288, find the area of BEA
![In the figure ABCB If CDBA 65 and the area of CED is 288 find the area of BEA class=](https://us-static.z-dn.net/files/deb/6cde5f27871cfb3f12830e6ebc45b977.jpg)
Answer:
The area of BEA is 200 square units.
Step-by-step explanation:
Given information: AB||CD and CD:BA = 6:5.
Let the length of sides CD and BA are 6x and 5x respectively.
If a transversal line intersect two parallel lines, then the alternative interior angles are equal.
[tex]\angle EAB=\angle EDC[/tex] (Alternate interior angles)
[tex]\angle EBA=\angle ECD[/tex] (Alternate interior angles)
[tex]\angle AEB=\angle DEC[/tex] (Vertically opposite angles)
By AAA property of similarity,
[tex]\triangle ABE\sim \triangle DEC[/tex]
The area of two similar triangles is proportional to the square of their corresponding sides.
[tex]\frac{Area(CED)}{Area(BEA)}=\frac{CD^2}{BA^2}[/tex]
[tex]\frac{288}{Area(BEA)}=\frac{(6x)^2}{(5x)^2}[/tex]
[tex]\frac{288}{Area(BEA)}=\frac{36x^2}{25x^2}[/tex]
[tex]\frac{288}{Area(BEA)}=\frac{36}{25}[/tex]
[tex]288\times 25=36\times Area(BEA)[/tex]
[tex]7200=36\times Area(BEA)[/tex]
Divide both sides by 36.
[tex]200=Area(BEA)[/tex]
Therefore the area of BEA is 200 square units.