Oscar05
contestada

What is the perimeter of the rectangle shown on the coordinate plane, to the nearest tenth of a unit?

13.4 units

17.9 units

26.8 units

40.0 units

What is the perimeter of the rectangle shown on the coordinate plane to the nearest tenth of a unit 134 units 179 units 268 units 400 units class=

Respuesta :

Answer:The answer is 26.8.


Step-by-step explanation:


see the attached figure to better understand the problem

Let

x------> the length side of a rectangle

y-------> the width side of a rectangle

we know that

the perimeter of a rectangle is equal to the formula

[tex]P=2x+2y[/tex]  

in this problem

[tex]AB=DC=x[/tex]

[tex]AD=BC=y[/tex]

Step 1

Find the distance AB


[tex]A(-6,4)\\B(2,8)[/tex]

we know that

the distance's formula between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2} +(x2-x1)^{2}}[/tex]

substitute the values

[tex]d=\sqrt{(8-4)^{2} +(2+6)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2} +(8)^{2}}[/tex]

[tex]dAB=\sqrt{80}\ units[/tex]

Step 2

Find the distance BC


tex]B(2,8)\\C(4,4)[/tex]

we know that

the distance's formula between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2} +(x2-x1)^{2}}[/tex]

substitute the values

[tex]d=\sqrt{(4-8)^{2} +(4-2)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2} +(2)^{2}}[/tex]

[tex]dBC=\sqrt{20}\ units[/tex]

Step 3

Find the perimeter

we know that

the perimeter of a rectangle is equal to the formula

[tex]P=2x+2y[/tex]

[tex]P=2AB+2BC[/tex]

we have

[tex]dAB=\sqrt{80}\ units=8.9\ units[/tex]

[tex]dBC=\sqrt{20}\ units=4.5\ units[/tex]

substitute the values of the distance in the formula

[tex]P=2*8.9+2*4.5=26.8\ units[/tex]

therefore

the answer is

The perimeter of the rectangle is equal to [tex]26.8\ units[/tex]


Ver imagen calculista
RELAXING NOICE
Relax