Note that the vector field is irrotational, since
[tex]\nabla\times\mathbf f(x,y,z)=\mathbf 0[/tex]
which means [tex]\mathbf f[/tex] is conservative. This means there is some scalar potential function [tex]f(x,y,z)[/tex] such that [tex]\nabla f(x,y,z)=\mathbf f(x,y,z)[/tex]. If we can find such a function, then we only need to evaluate the difference of [tex]f(5,3,2)[/tex] and [tex]f(1,0,0)[/tex] (because the gradient theorem holds in this case).
We're looking for a function [tex]f(x,y,z)[/tex] that satisfies
[tex]\dfrac{\partial f}{\partial x}=y+z[/tex]
[tex]\dfrac{\partial f}{\partial y}=x+z[/tex]
[tex]\dfrac{\partial f}{\partial z}=x+y[/tex]
Integrate the first equation with respect to [tex]x[/tex] to get
[tex]f(x,y,z)=xy+xz+g(y,z)[/tex]
Differentiate with respect to [tex]y[/tex], then we must have
[tex]\dfrac{\partial f}{\partial y}=x+z=x+\dfrac{\partial g}{\partial y}[/tex]
[tex]\implies\dfrac{\partial g}{\partial y}=z[/tex]
[tex]\implies g(y,z)=yz+h(z)[/tex]
[tex]\implies f(x,y,z)=xy+xz+yz+h(z)[/tex]
Differentiate with respect to [tex]z[/tex], and we have to have
[tex]\dfrac{\partial f}{\partial z}=x+y=x+y+\dfrac{\mathrm dh}{\mathrm dz}[/tex]
[tex]\implies\dfrac{\mathrm dh}{\mathrm dz}=0[/tex]
[tex]\implies h(z)=C[/tex]
[tex]\implies f(x,y,z)=xy+xz+yz+C[/tex]
Now, by the gradient theorem, we have
[tex]\text{work}=\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=f(5,3,2)-f(1,0,0)=31[/tex]
where [tex]\mathcal C[/tex] is the line segment.