Respuesta :
The answer is: " [tex] \frac{1}{4}[/tex] " ; or, write as: "0.25" .
___________
Explanation:
__________
Method 1)
__________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
= [tex] \frac{1 * 2 * 3}{2* 3 *4} [/tex] ;
= [tex] \frac{6}{24}[/tex] ;
= [tex] \frac{6/6}{24/6}[/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
_________________
Method 2)
_________________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
= [tex] \frac{1 * 2 * 3}{2* 3 *4} [/tex] ;
→ The "2's" & "3's" in both the numerator & denominator "cancel out" to "1" ; {since: "(2÷2=1)" ; and "(3÷3=1" ) ;
→ And we have:
→ [tex] \frac{1 * 1 * 1}{1 * 1 * 4} [/tex] ;
= [tex] \frac{1}{4} [/tex] ; or; write as: "0.25" .
________________
Method 3) (similar to "Method 2" above):
_________________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
= [tex] \frac{1 * 2 * 3}{2* 3 *4} [/tex] ;
→ The "2" in numerator cancels out to "1" ; and the "4" in the denominator cancels to "2" ; {since: "(4÷2=2)" ; and since: "(2÷2=1)" ;
→ The "3's" in both the numerator AND denominator "cancel out" to "1" ; {since: "(3÷3=1" ) ;
→ And we have:
→ [tex] \frac{1 * 1 * 1}{2 * 1 * 2} [/tex] ;
= [tex] \frac{1}{4} [/tex] ; or; write as: "0.25" .
_______________
Method 4)
_______________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
→ Cancel out the "2" in the denominator of "[tex] \frac{1}{2}[/tex]" ; to a "1" ; AND cancel out the "2" in the numerator of "[tex] \frac{2}{3} [/tex] " ; to a "1" ;
{since: "{2÷2=1}" ;
→ Cancel out the "3" in the denominator of "[tex] \frac{2}{3} [/tex] " ; to a "1" ;
AND cancel out the "3" in the numerator of: "[tex] \frac{3}{4}[/tex]" ; to a "1" ;
{since: "(3÷3=1}" ;
→ And we have:
→ [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{4} [/tex] ;
= [tex] \frac{1 * 1 * 1}{1 * 1 *4} [/tex] ;
= [tex] \frac{1}{4} [/tex] ; or; write as: "0.25" .
________________
Variation:
________________
At the point when we have:
________________
→ [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{4} [/tex] ;
________________
We can eliminate the:
" [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1}[/tex] " ;
{since: " [tex] \frac{1}{1}[/tex] = 1 " ;
{and since: " [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1}[/tex] " = 1 * 1 = 1 ;
and since: "1", multiplied by any value, equals that exact same value;
_____________
THAT IS:
_____________
→ [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{4}[/tex] ;
= 1 * 1 * [tex] \frac{1}{4}[/tex] ;
= (1 * 1) * [tex] \frac{1}{4}[/tex] ;
= 1 * [tex] \frac{1}{4}[/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
_____________
Method 5) (similar to "Method 4" above):
____________________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
→ Cancel out the "2" in the numerator of "[tex] \frac{2}{3} [/tex]" ; to a " 1 " ;
AND cancel out the "4" in the denominator of "[tex] \frac{3}{4}[/tex]"; to a "2" ;
{since: "{4÷2=2}" ; and since: "{2÷2=1}" ;
→ Cancel out the "3" in the denominator of "[tex] \frac{2}{3} [/tex] " ; to a "1" ;
AND cancel out the "3" in the numerator of: "[tex] \frac{3}{4}[/tex]" ; to a "1" ;
{since: "(3÷3=1}" ;
→ And we have:
_____________
→ [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{2} [/tex] ;
= [tex] \frac{1 * 1 * 1}{2 * 1 *2}[/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
__________
Variation:
__________
At the point when we have:
__________
→ [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{2} [/tex] ;
__________
We can eliminate the:
" [tex] \frac{1}{1}[/tex] " ;
{since: " [tex] \frac{1}{1}[/tex] = 1 " } ;
{and since: "1", multiplied by any value, equals that exact same value} ;
___________
THAT IS:
___________
→ [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{2} [/tex] ;
= [tex] \frac{1}{2}[/tex] * 1 * [tex] \frac{1}{2}[/tex] ;
= [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{2}[/tex] ;
= [tex] \frac{1*1}{2*2} [/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
__________________________________________________________
___________
Explanation:
__________
Method 1)
__________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
= [tex] \frac{1 * 2 * 3}{2* 3 *4} [/tex] ;
= [tex] \frac{6}{24}[/tex] ;
= [tex] \frac{6/6}{24/6}[/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
_________________
Method 2)
_________________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
= [tex] \frac{1 * 2 * 3}{2* 3 *4} [/tex] ;
→ The "2's" & "3's" in both the numerator & denominator "cancel out" to "1" ; {since: "(2÷2=1)" ; and "(3÷3=1" ) ;
→ And we have:
→ [tex] \frac{1 * 1 * 1}{1 * 1 * 4} [/tex] ;
= [tex] \frac{1}{4} [/tex] ; or; write as: "0.25" .
________________
Method 3) (similar to "Method 2" above):
_________________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
= [tex] \frac{1 * 2 * 3}{2* 3 *4} [/tex] ;
→ The "2" in numerator cancels out to "1" ; and the "4" in the denominator cancels to "2" ; {since: "(4÷2=2)" ; and since: "(2÷2=1)" ;
→ The "3's" in both the numerator AND denominator "cancel out" to "1" ; {since: "(3÷3=1" ) ;
→ And we have:
→ [tex] \frac{1 * 1 * 1}{2 * 1 * 2} [/tex] ;
= [tex] \frac{1}{4} [/tex] ; or; write as: "0.25" .
_______________
Method 4)
_______________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
→ Cancel out the "2" in the denominator of "[tex] \frac{1}{2}[/tex]" ; to a "1" ; AND cancel out the "2" in the numerator of "[tex] \frac{2}{3} [/tex] " ; to a "1" ;
{since: "{2÷2=1}" ;
→ Cancel out the "3" in the denominator of "[tex] \frac{2}{3} [/tex] " ; to a "1" ;
AND cancel out the "3" in the numerator of: "[tex] \frac{3}{4}[/tex]" ; to a "1" ;
{since: "(3÷3=1}" ;
→ And we have:
→ [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{4} [/tex] ;
= [tex] \frac{1 * 1 * 1}{1 * 1 *4} [/tex] ;
= [tex] \frac{1}{4} [/tex] ; or; write as: "0.25" .
________________
Variation:
________________
At the point when we have:
________________
→ [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{4} [/tex] ;
________________
We can eliminate the:
" [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1}[/tex] " ;
{since: " [tex] \frac{1}{1}[/tex] = 1 " ;
{and since: " [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1}[/tex] " = 1 * 1 = 1 ;
and since: "1", multiplied by any value, equals that exact same value;
_____________
THAT IS:
_____________
→ [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{1}[/tex] * [tex] \frac{1}{4}[/tex] ;
= 1 * 1 * [tex] \frac{1}{4}[/tex] ;
= (1 * 1) * [tex] \frac{1}{4}[/tex] ;
= 1 * [tex] \frac{1}{4}[/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
_____________
Method 5) (similar to "Method 4" above):
____________________
[tex] \frac{1}{2}[/tex]*[tex] \frac{2}{3} [/tex]*[tex] \frac{3}{4}[/tex] ;
→ Cancel out the "2" in the numerator of "[tex] \frac{2}{3} [/tex]" ; to a " 1 " ;
AND cancel out the "4" in the denominator of "[tex] \frac{3}{4}[/tex]"; to a "2" ;
{since: "{4÷2=2}" ; and since: "{2÷2=1}" ;
→ Cancel out the "3" in the denominator of "[tex] \frac{2}{3} [/tex] " ; to a "1" ;
AND cancel out the "3" in the numerator of: "[tex] \frac{3}{4}[/tex]" ; to a "1" ;
{since: "(3÷3=1}" ;
→ And we have:
_____________
→ [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{2} [/tex] ;
= [tex] \frac{1 * 1 * 1}{2 * 1 *2}[/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
__________
Variation:
__________
At the point when we have:
__________
→ [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{2} [/tex] ;
__________
We can eliminate the:
" [tex] \frac{1}{1}[/tex] " ;
{since: " [tex] \frac{1}{1}[/tex] = 1 " } ;
{and since: "1", multiplied by any value, equals that exact same value} ;
___________
THAT IS:
___________
→ [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{1} [/tex] * [tex] \frac{1}{2} [/tex] ;
= [tex] \frac{1}{2}[/tex] * 1 * [tex] \frac{1}{2}[/tex] ;
= [tex] \frac{1}{2}[/tex] * [tex] \frac{1}{2}[/tex] ;
= [tex] \frac{1*1}{2*2} [/tex] ;
= [tex] \frac{1}{4}[/tex] ; or, write as: "0.25" .
__________________________________________________________