Respuesta :
Let A, B, C, D, E be the given points in order.
AB=4-1=3
BC=√((7-4)²+(2-(-2))²)=√(9+16)=√25=5
CD=BC=5
DE=4-1=3
AE=6-(-2)=8
Perimeter=3+5+5+3+8=24.
AB=4-1=3
BC=√((7-4)²+(2-(-2))²)=√(9+16)=√25=5
CD=BC=5
DE=4-1=3
AE=6-(-2)=8
Perimeter=3+5+5+3+8=24.
Using the distance formula, the perimeter of the polygon that has the given vertices is calculated as: 24 units.
What is the Perimeter of a Polygon?
Perimeter = sum of all sides of the polygon.
Name the vertices as follows:
- A(−2, 1)
- B(−2, 4)
- C(2, 7)
- D(6, 4)
- E(6, 1)
Perimeter of the polygon = AB + BC + CD + DE + EA
Use the distance formula, [tex]d = \sqrt{x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex], to find the length of each segment:
AB = |1 - 4| = 3 units
BC = √[(2−(−2))² + (7−4)²]
BC = 5 units
CD = √[(2−6)² + (7−4)²
CD = 5 units
DE = |4 - 1| = 3 units
EA = |6 - (-2)| = 8 units
Perimeter of the polygon = 3 + 5 + 5 + 3 + 8
Perimeter of the polygon = 24 units
Learn more about perimeter of a polygon on:
https://brainly.com/question/3310006
#SPJ2